(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
f(s(X)) → f(X)
g(cons(0, Y)) → g(Y)
g(cons(s(X), Y)) → s(X)
h(cons(X, Y)) → h(g(cons(X, Y)))
Rewrite Strategy: INNERMOST
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
f(s(X)) → f(X)
g(cons(0', Y)) → g(Y)
g(cons(s(X), Y)) → s(X)
h(cons(X, Y)) → h(g(cons(X, Y)))
S is empty.
Rewrite Strategy: INNERMOST
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
Innermost TRS:
Rules:
f(s(X)) → f(X)
g(cons(0', Y)) → g(Y)
g(cons(s(X), Y)) → s(X)
h(cons(X, Y)) → h(g(cons(X, Y)))
Types:
f :: s:0':cons → f
s :: s:0':cons → s:0':cons
g :: s:0':cons → s:0':cons
cons :: s:0':cons → s:0':cons → s:0':cons
0' :: s:0':cons
h :: s:0':cons → h
hole_f1_0 :: f
hole_s:0':cons2_0 :: s:0':cons
hole_h3_0 :: h
gen_s:0':cons4_0 :: Nat → s:0':cons
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
f,
g,
hThey will be analysed ascendingly in the following order:
g < h
(6) Obligation:
Innermost TRS:
Rules:
f(
s(
X)) →
f(
X)
g(
cons(
0',
Y)) →
g(
Y)
g(
cons(
s(
X),
Y)) →
s(
X)
h(
cons(
X,
Y)) →
h(
g(
cons(
X,
Y)))
Types:
f :: s:0':cons → f
s :: s:0':cons → s:0':cons
g :: s:0':cons → s:0':cons
cons :: s:0':cons → s:0':cons → s:0':cons
0' :: s:0':cons
h :: s:0':cons → h
hole_f1_0 :: f
hole_s:0':cons2_0 :: s:0':cons
hole_h3_0 :: h
gen_s:0':cons4_0 :: Nat → s:0':cons
Generator Equations:
gen_s:0':cons4_0(0) ⇔ 0'
gen_s:0':cons4_0(+(x, 1)) ⇔ s(gen_s:0':cons4_0(x))
The following defined symbols remain to be analysed:
f, g, h
They will be analysed ascendingly in the following order:
g < h
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
f(
gen_s:0':cons4_0(
+(
1,
n6_0))) →
*5_0, rt ∈ Ω(n6
0)
Induction Base:
f(gen_s:0':cons4_0(+(1, 0)))
Induction Step:
f(gen_s:0':cons4_0(+(1, +(n6_0, 1)))) →RΩ(1)
f(gen_s:0':cons4_0(+(1, n6_0))) →IH
*5_0
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
Innermost TRS:
Rules:
f(
s(
X)) →
f(
X)
g(
cons(
0',
Y)) →
g(
Y)
g(
cons(
s(
X),
Y)) →
s(
X)
h(
cons(
X,
Y)) →
h(
g(
cons(
X,
Y)))
Types:
f :: s:0':cons → f
s :: s:0':cons → s:0':cons
g :: s:0':cons → s:0':cons
cons :: s:0':cons → s:0':cons → s:0':cons
0' :: s:0':cons
h :: s:0':cons → h
hole_f1_0 :: f
hole_s:0':cons2_0 :: s:0':cons
hole_h3_0 :: h
gen_s:0':cons4_0 :: Nat → s:0':cons
Lemmas:
f(gen_s:0':cons4_0(+(1, n6_0))) → *5_0, rt ∈ Ω(n60)
Generator Equations:
gen_s:0':cons4_0(0) ⇔ 0'
gen_s:0':cons4_0(+(x, 1)) ⇔ s(gen_s:0':cons4_0(x))
The following defined symbols remain to be analysed:
g, h
They will be analysed ascendingly in the following order:
g < h
(10) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol g.
(11) Obligation:
Innermost TRS:
Rules:
f(
s(
X)) →
f(
X)
g(
cons(
0',
Y)) →
g(
Y)
g(
cons(
s(
X),
Y)) →
s(
X)
h(
cons(
X,
Y)) →
h(
g(
cons(
X,
Y)))
Types:
f :: s:0':cons → f
s :: s:0':cons → s:0':cons
g :: s:0':cons → s:0':cons
cons :: s:0':cons → s:0':cons → s:0':cons
0' :: s:0':cons
h :: s:0':cons → h
hole_f1_0 :: f
hole_s:0':cons2_0 :: s:0':cons
hole_h3_0 :: h
gen_s:0':cons4_0 :: Nat → s:0':cons
Lemmas:
f(gen_s:0':cons4_0(+(1, n6_0))) → *5_0, rt ∈ Ω(n60)
Generator Equations:
gen_s:0':cons4_0(0) ⇔ 0'
gen_s:0':cons4_0(+(x, 1)) ⇔ s(gen_s:0':cons4_0(x))
The following defined symbols remain to be analysed:
h
(12) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol h.
(13) Obligation:
Innermost TRS:
Rules:
f(
s(
X)) →
f(
X)
g(
cons(
0',
Y)) →
g(
Y)
g(
cons(
s(
X),
Y)) →
s(
X)
h(
cons(
X,
Y)) →
h(
g(
cons(
X,
Y)))
Types:
f :: s:0':cons → f
s :: s:0':cons → s:0':cons
g :: s:0':cons → s:0':cons
cons :: s:0':cons → s:0':cons → s:0':cons
0' :: s:0':cons
h :: s:0':cons → h
hole_f1_0 :: f
hole_s:0':cons2_0 :: s:0':cons
hole_h3_0 :: h
gen_s:0':cons4_0 :: Nat → s:0':cons
Lemmas:
f(gen_s:0':cons4_0(+(1, n6_0))) → *5_0, rt ∈ Ω(n60)
Generator Equations:
gen_s:0':cons4_0(0) ⇔ 0'
gen_s:0':cons4_0(+(x, 1)) ⇔ s(gen_s:0':cons4_0(x))
No more defined symbols left to analyse.
(14) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
f(gen_s:0':cons4_0(+(1, n6_0))) → *5_0, rt ∈ Ω(n60)
(15) BOUNDS(n^1, INF)
(16) Obligation:
Innermost TRS:
Rules:
f(
s(
X)) →
f(
X)
g(
cons(
0',
Y)) →
g(
Y)
g(
cons(
s(
X),
Y)) →
s(
X)
h(
cons(
X,
Y)) →
h(
g(
cons(
X,
Y)))
Types:
f :: s:0':cons → f
s :: s:0':cons → s:0':cons
g :: s:0':cons → s:0':cons
cons :: s:0':cons → s:0':cons → s:0':cons
0' :: s:0':cons
h :: s:0':cons → h
hole_f1_0 :: f
hole_s:0':cons2_0 :: s:0':cons
hole_h3_0 :: h
gen_s:0':cons4_0 :: Nat → s:0':cons
Lemmas:
f(gen_s:0':cons4_0(+(1, n6_0))) → *5_0, rt ∈ Ω(n60)
Generator Equations:
gen_s:0':cons4_0(0) ⇔ 0'
gen_s:0':cons4_0(+(x, 1)) ⇔ s(gen_s:0':cons4_0(x))
No more defined symbols left to analyse.
(17) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
f(gen_s:0':cons4_0(+(1, n6_0))) → *5_0, rt ∈ Ω(n60)
(18) BOUNDS(n^1, INF)